

Single Pair Ethernet

CINI4.0 Conference Day - 16/06/2022 - Gent

Arne Verhoeven Dimitri De Schuyter Mathieu Troch Philippe Saey (lecturer)

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

2

From 2 pair 100 Mbps (e.g. PROFINET)

To 1 pair 10 - 100 - 1000 Mbps

Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair

3

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

What is Single Pair Ethernet?

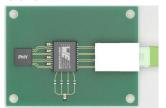
- SPE affects only the physical layer
 - · Just like optical fiber, WiFi...
- · Layers 2-7 remain unchanged

802.3 Standard Ethernet

Application	End User layer HTTP, FTP, IRC, SSH, DNS
Presentation	Syntax layer SSL, SSH, IMAP, FTP, MPEG, JPEG
Session	Synch & send to port API's, Sockets, WinSock
Transport	End-to-end connections TCP, UDP
Network	Packets IP, ICMP, IPSec, IGMP
Data Link	Frames Ethernet, PPP, Switch, Bridge
Physical	Physical structure Coax, Fiber, Wireless, Hubs, Repeaters

SPE Specific

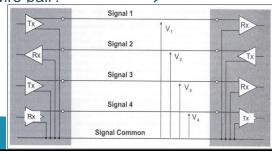
Advantages of Single Pair Ethernet


- Smaller connector + reduced footprint
- Lighter, more compact, cheaper and simpler cabling
- Simpler field assembly of connectors
- Power + data over 1 wire pair
- High bandwidth up to 1000 Mbps
- Low bandwidth (10 Mbps) over 1000 m
 - With optional intrinsic safety
 - With optional re-use of existing fieldbus cabling

Implemented in different standards!

SPE (10BASE-T1L) PCB

RJ45 PCB



CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

What is Single Pair Ethernet?

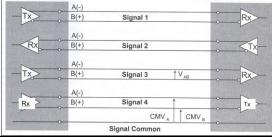
- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - · Over one wire pair?
 - Signals
 - Power

Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- Balanced/differential: e.g. RS485, Ethernet
- Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use cases"

Twisted:

 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)



6

- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?
 - Signals
 - Power

Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- Balanced/differential: e.g. RS485 Ethernet

Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use cases"

Twisted:

 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)


What is Single Pair Ethernet?

- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- · Interpretation Challenges:
 - Balanced
 - Twisted

8

- Full duplex
- Over one wire pair?
 - Signals

Power

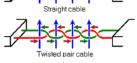
Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- Balanced/differential: e.g. RS485 Ethernet

Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use cases"

Twisted:

 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)


- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?

Signals

Power

9

Reduction of inductive coupling Without twisted pair:

Twisted pair: Magnetic field induces a current

Magnetic field induces a current

Induced noise current

Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- · Balanced/differential: e.g. RS485, Ethernet
- · Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use

Twisted:

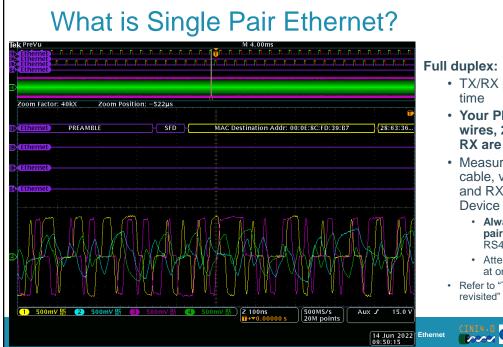
 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)

Pair Ethernet

What is Single Pair Ethernet?

- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?
 - Signals
 - Power

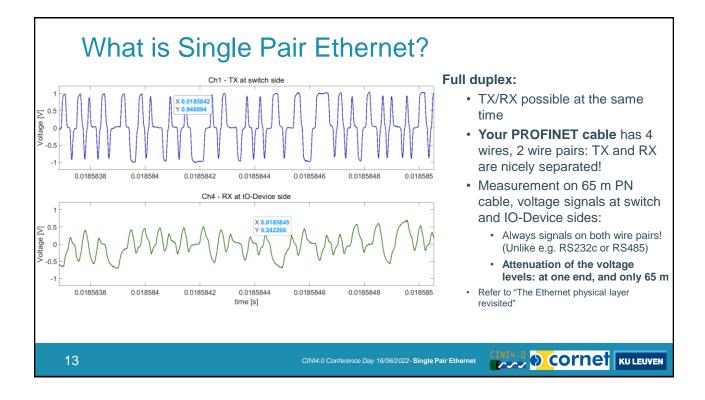
Full duplex:


- TX/RX possible at the same
- Your PROFINET cable has 4 wires, 2 wire pairs: TX and RX are nicely separated!
- Measurement on 65 m PN cable, voltage signals on TX and RX at switch and IO-Device sides:
 - · Always signals on both wire pairs! (Unlike e.g. RS232c or RS485)
 - · Attenuation of the voltage levels: at one end, and only 65 m
- · Refer to "The Ethernet physical layer revisited"

10

- TX/RX possible at the same
- Your PROFINET cable has 4 wires, 2 wire pairs: TX and RX are nicely separated!
- · Measurement on 65 m PN cable, voltage signals on TX and RX at switch and IO-Device sides:
 - · Always signals on both wire pairs! (Unlike e.g. RS232c or RS485)
 - · Attenuation of the voltage levels: at one end, and only 65 m
- Refer to "The Ethernet physical layer

- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?
 - Signals
 - Power

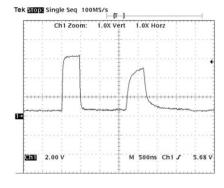

Full duplex:

- TX/RX possible at the same time
- Your PROFINET cable has 4 wires, 2 wire pairs: TX and RX are nicely separated!
- · Measurement on 65 m PN cable, voltage signals at switch and IO-Device sides:
 - · Always signals on both wire pairs! (Unlike e.g. RS232c or RS485)
 - Attenuation of the voltage levels: at one end, and only 65 m
- · Refer to "The Ethernet physical layer revisited'

12

 Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair

- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?
 - Signals
 - Power


Over one wire pair ???

- · Superposition of signals as these are always present
- Large one from the "near end" superimposes on the small one coming from the "far end"
- Some types of SPE cable are a 1000 m long ... up to 60 dB less signal (depending on the frequency)
- We see on both sides reflections ("echo") because of small changes in characteristic impedance along the way (passive connections, different cable types, ageing and wear, ...)
- · We pick up disturbances along the way
- And ... PoE requires 4 wires ...

14

Background: reflection - RS485 example

Open line (Rt > Zo)

Reflection coefficient

· The way how a signal will be reflected can be calculated by the reflection coefficient:

$$\Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$

· For short circuited lines:

A reflection coefficient of -1 = total and negative reflection

$$\Gamma = \frac{0 \Omega - 150 \Omega}{0 \Omega + 150 \Omega} = -1$$

· For open lines:

A reflection coefficient of +1 = total and positive reflection

$$\Gamma = \frac{\infty \Omega - 150 \Omega}{\infty \Omega + 150 \Omega} = 1$$

15

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

SPE Standards in short

- 10BASE-T1S
 - Half duplex, point-to-point or multidrop, 25 m
- 10BASE-T1L
 - Full duplex, 1000 m, power, intrinsic safety
- 100BASE-T1
 - Full duplex, power, 40 m
- 1000BASE-T1
 - Full duplex, power, 40 m

Automotive

Industrial

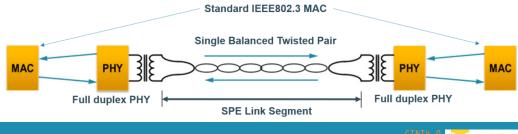
16

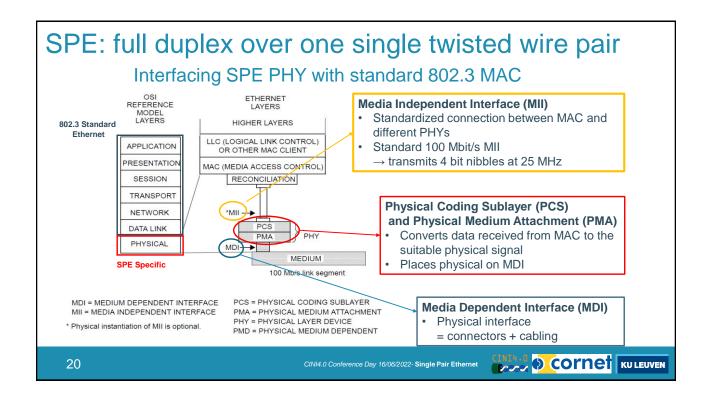
SPE Standards - Properties

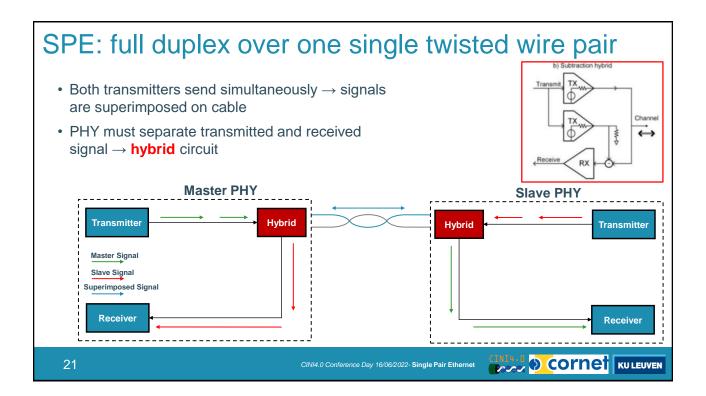
	10BASE-T1S	10BASE-T1L	100BASE-T1	1000BASE-T1
Standard	802.3cg-2019	802.3cg-2019	ISO/IEC/IEEE 8802- 3:2017/Amd 1-2017	ISO/IEC/IEEE 8802- 3:2017/Amd 4-2017
Duplex type	Half duplex	Full duplex	Full duplex	Full duplex
Max. unshielded cable length (m)	15 (point-to-point) 25 (multidrop)	/	15	15
Max. shielded cable length (m)	15 (point-to-point) 25 (multidrop)	1000	40	40
Max peak-to-peak voltage level of transceiver (V)	1	1, 2.4	2.2	1.3
PoDL	Point-to-point: Yes Multidrop: in progress	Yes	Yes	Yes
Extra features	Multidrop	Ethernet-APL with intrinsic safety for process industry		

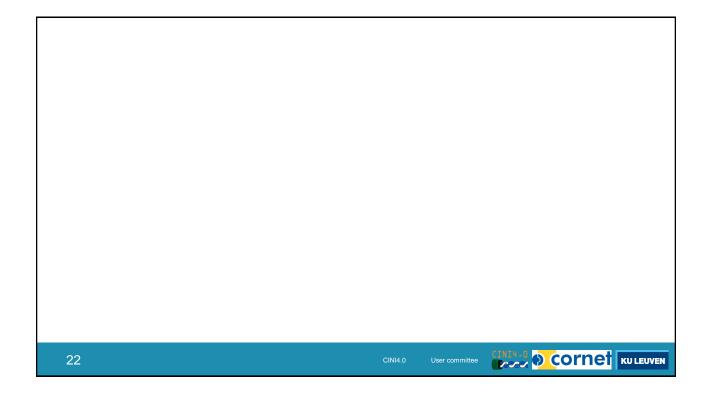
Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

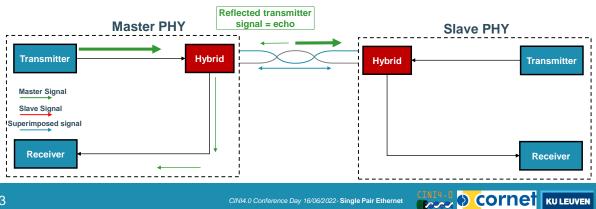



SPE: full duplex over one single twisted wire pair · SPE affects only the physical layer

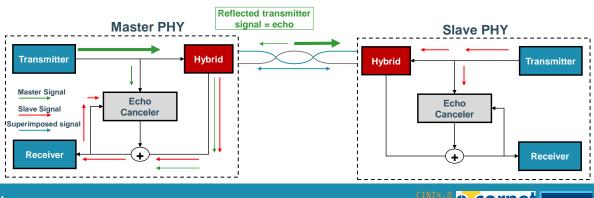

- · Just like optical fiber, WiFi... · Layers 2-7 remain unchanged
- PHY interfaces with data link "MAC" layer using the standardized Media Independent Interface (MII) also here reuse of (part of) the existing electronic design



19



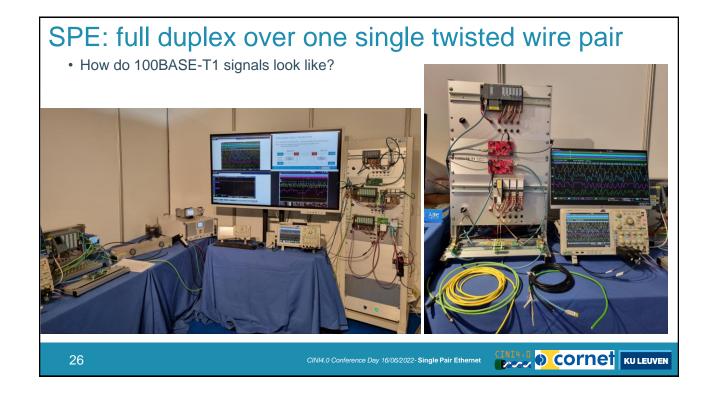
SPE: full duplex over one single twisted wire pair


- But... impedance mismatches exist → part of transmitted signal reflected: "echo"
- Echo can not be interpreted as a received signal from partner PHY

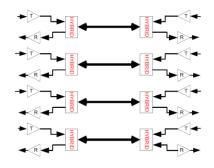
23

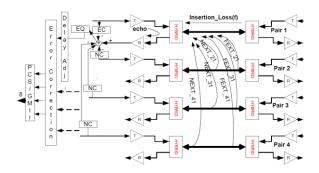
SPE: full duplex over one single twisted wire pair

- But... impedance mismatches exist → part of transmitted signal reflected: "echo"
- Echo can not be interpreted as a received signal from partner PHY
 - → Removed by Echo Canceller (signals drawn only on Master side)



24


SPE: full duplex over one single twisted wire pair How do 100BASE-T1 signals look like? CH1-Voltage measured at master CH2-Quarter measured at master CH2-Current measured at master CH2-Quarter measured at master Math13- Near end signal at master Math14- Far end signal at master Measurements with 8 CH Tektronix, TEK specific measuring principle


SPE: full duplex over one single twisted wire pair

- Surprise: it's nothing new ...
- Your 1 Gbps Ethernet uses ... SPE signaling

Use all four pairs with full-duplex transmission on each pair. (Requires hybrid.)

1000BASE-T uses DSP-based adaptive filtering to cancel the effects of echo, crosstalk and noise

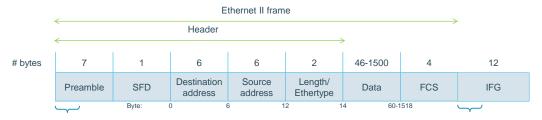
27

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

28



The Ethernet Frame

- Ethernet frame remains the same, except preamble and Inter Frame Gap (IFG)
 - Start- and end-of-stream delimiter added (SSD and ESD)

Also in e.g. PRP redundancy and "in the wireless phase" in WiFi you get a header/trailer: invisible for end user

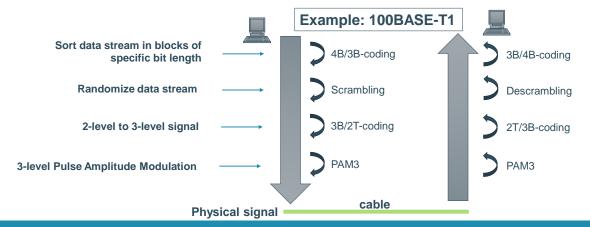
Start-of-Stream Delimiter (SSD)

- Replaces first x bits of preamble
 - 10BASE-T1L: 16 bits
 - 100BASE-T1: 9 bits
 - 1000BASE-T1: 9 bits

End-of-Stream Delimiter (ESD)

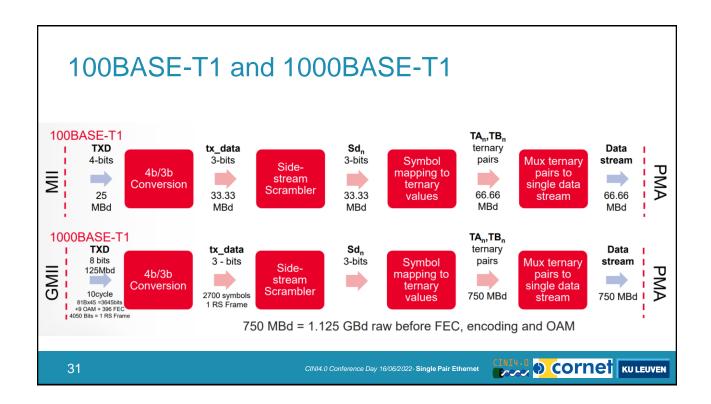
- Replaces first y bits of IFG
 - 10BASE-T1L: 16 bits
 - 100BASE-T1: 9 bits
 - 1000BASE-T1: 9 bits

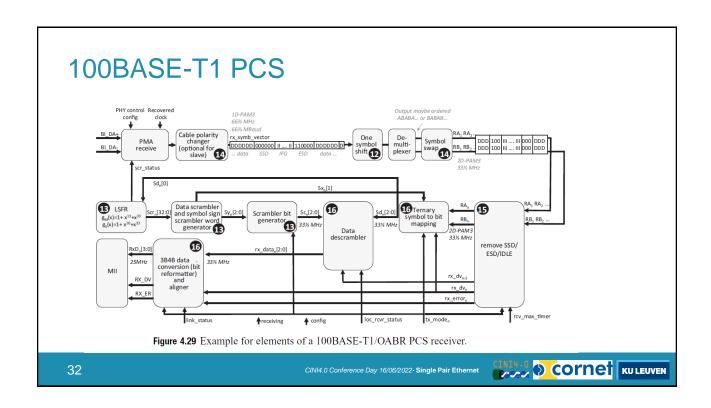
29

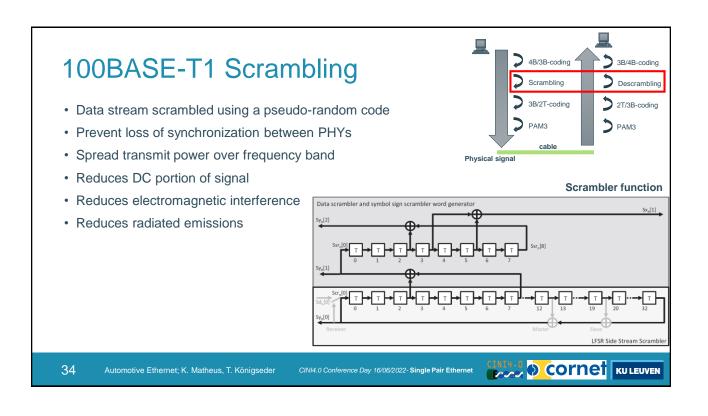

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

100BASE-T1 Signal Encoding

- Different standards = different physical signals
- But... they share common encoding principles (except 10BASE-T1S)




30



CORNET KULEUVEN

100BASE-T1 - 4bit/3bit Encoding Data stream from MAC layer → 4-bit nibbles at 25 MHz Convert to 3-bit blocks at 33,3 MHz 4B/3B-coding 3B/4B-coding MAC Scrambling Descrambling MII 4 bits at 25 MHz 3B/2T-coding 2T/3B-coding **PHY** PAM3 cable Physical signal

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

33

100BASE-T1 - 3bit/2ternary encoding

- Ternary = 3-level value (-1, 0, 1)
- 3-bit blocks coded into 2 ternaries 9 possibilities
- · Coding table dependent on PHY status

3B/4B-coding 4B/3B-coding Descrambling Scrambling 3B/2T-coding 2T/3B-coding **Э** РАМЗ cable Physical signal

Table 96-2-Data symbols when tx_mode=SEND_N

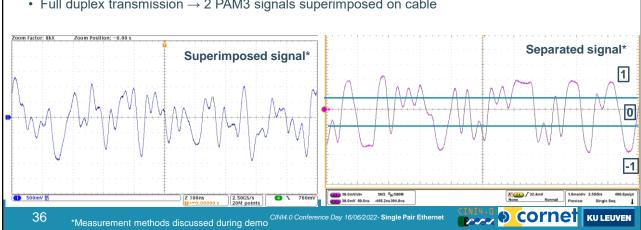
Sd _n [2:0]	TA_n	TB_n
000	-1	-1
001	-1	0
010	-1	1
011	0	-1
Used for SSD/ESD	0	0
100	0	1
101	1	-1
110	1	0
111	1	1

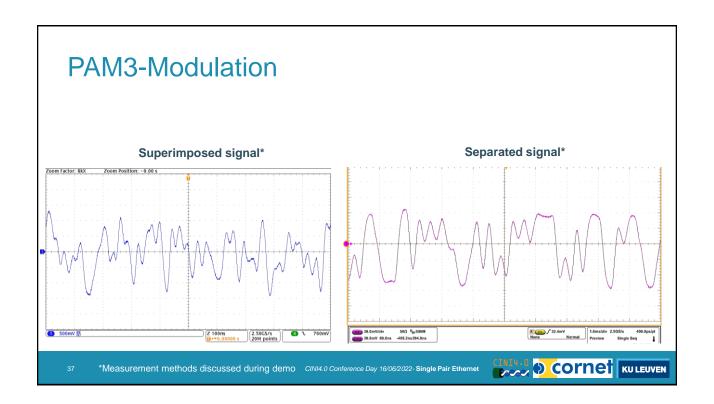
Encoding example

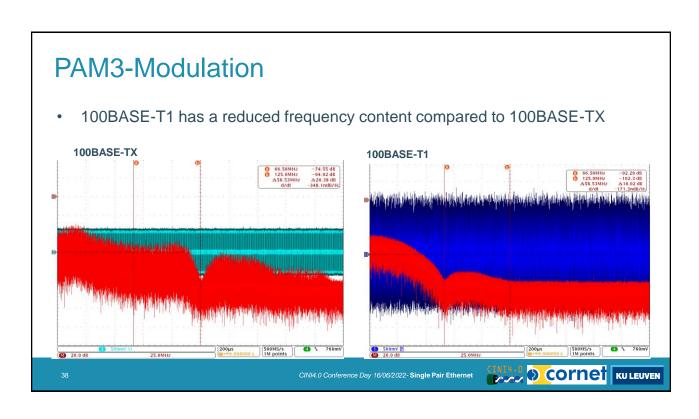
3B	001	100	111
2T	-1, 0	0, 1	1, 1

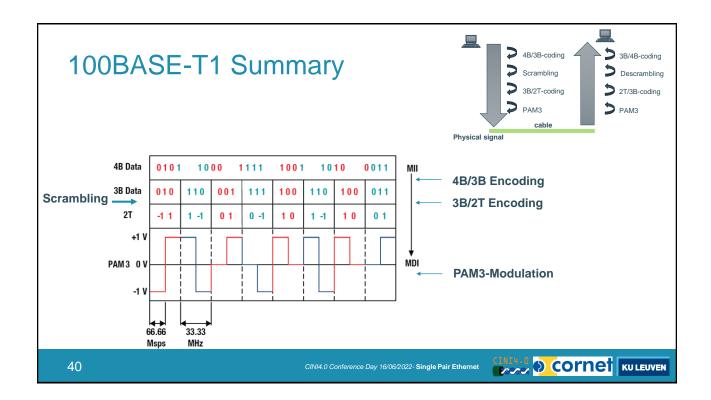
TI: 100BASE-T1 Ethernet: the evolution of automotive networking

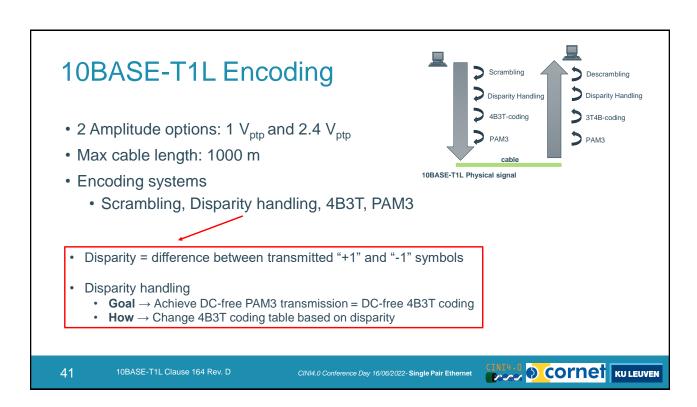
35


CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet






PAM3-Modulation


- 3-level Pulse Amplitude Modulation (PAM3)
 - 3 amplitude levels (Ternary) → -1, 0, 1
- Transmitted at 66,6 MHz, 1 ternary every 15 ns
- Full duplex transmission → 2 PAM3 signals superimposed on cable

10BASE-T1L Disparity handling

- Default disparity = 2
- · E.g. data stream 0011 1001 1100 Disparity -1 Disparity +1 Disparity +1

 4B3T Coding 00+ +-+ -+-

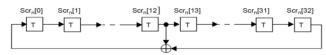
Resulting disparity = 3

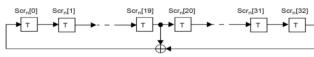
	<u></u>								
	Sd _n [3:0]	Disparity	= 1	Disparity =	Disparity = 2 / Disparity = 3		3	Disparity = 4	
		Ternary	Disparity	Ternary	Disparity	Ternary	Disparity	Ternary	Disparity
		Triplet	Change	Triplet	Change	Triplet	Change	Triplet	Change
	0000	+0+	2	0-0	-1	0-0	-1	0-0	-1
	0001	0-+	0	0-+	0	0-+	0	0-+	0
	0010	+-0	0	+-0	0	+-0	0	+-0	0
\rightarrow	0011	00+	1	00+	1	00+	1	0	-2
	0100	-+0	0	-+0	0	-+0	0	-+0	0
	0101	0++	2	-00	-1	-00	-1	-00	-1
	0110	-++	1	-++	1	+	-1	+	-1
	0111	-0+	0	-0+	0	-0+	0	-0+	0
	1000	+00	1	+00	1	+00	1	0	-2
\rightarrow	1001	+-+	1	+-+	1	+-+	1		-3
	1010	++-	1	++-	1	+	-1	+	-1
	1011	+0-	0	+0-	0	+0-	0	+0-	0
\rightarrow	1100	+++	3	-+-	-1	-+-	-1	-+-	-1
	1101	0+0	1	0+0	1	0+0	1	-0-	-2
	1110	0+-	0	0+-	0	0+-	0	0+-	0
	1111	++0	2	00-	-1	00-	-1	00-	-1

Default

4B3T Coding based on disparity

42


10BASE-T1L Clause 164 Rev. D CINI4.0 Conference Day 16/06/2022-Single Pair Ethernet

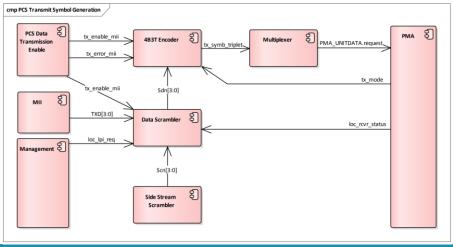

10BASE-T1L Scrambler

$$g_M(x) = 1 + x^{13} + x^{33}$$

 $g_S(x) = 1 + x^{20} + x^{33}$

Side-stream scrambler employed by the MASTER PHY

Side-stream scrambler employed by the SLAVE PHY



43

10BASE-T1L Transmit Symbol Generation Block Diagram

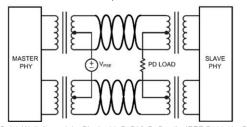
44 https://www.ieee802.org/3/cg/public/Sept2017/Graber_3cg/l/15/a_09476740/de Day 16/06/2022-Single Pair Ethernet

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

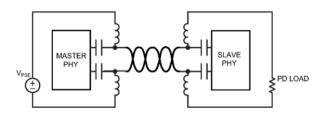
45

PoE and PoDL Principles


*Power to device

2 Types of devices

- · Load: Powered Device PD
- · Source: Power Sourcing Equipment PSE


Power over Ethernet (PoE)

- PSE and PD connected through transformer center taps
- 44-57 V
- Max. 25,5 W* (802.3at, 4-wire cabling)

SPE – Power over Data Line (PoDL)

- PSE and PD Connected through highpass/lowpass band splitting network
- 12, 24, 48 V
- Max. 50 W (802.3bu)

"A Quick Walk Around the Block with PoDL", D. Dwelly. IEEE P802.3bu Power over Data Lines Tutorial - November 2015 IEEE 802.3 Plenary

46

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

PoDL power classes (802.3bu)

	Unreg	V ulated SE	Regu	V llated SE	_	V ulated SE		V lated SE	48 Regu PS	lated
Class	0	1	2	3	4	5	6	7	8	9
V _{PSE(max)} (V)	18	18	18	18	36	36	36	36	60	60
V _{PSE_OC(min)} (V)	6	6	14.4	14.4	12	12	26	26	48	48
V _{PSE(min)} (V)	5.6	5.77	14.4	14.4	11.7	11.7	26	26	48	48
I _{PI(max)} (mA)	101	227	249	417	97	339	215	461	735	1360
P _{Class(min)} (W)	0.566	1.31	3.59	6.79	1.14	3.97	5.59	12	35.3	65.3
V _{PD(min)} (V)	4.94	4.41	12	10.6	10.3	8.86	23.3	21.7	40.8	36.7
P _{PD(max)} (W)	0.5	1	3	5	1	3	5	10	30	50

 $V_{PSE(max)} \rightarrow Maximum$ allowed voltage at the PSE PI over the full range of operating conditions

 $V_{PSE_OC(min)} \rightarrow Minimum$ allowed open circuit voltage measured at the PSE PI

 $\stackrel{\cdot}{\text{Pl}_{\text{Pl}(\text{max})}} \rightarrow \text{Maximum current flowing at the PSE and PD Pls except during inrush or an overload condition}$

 $P_{Class(min)} \rightarrow Minimum$ average available output power at the PSE PI

 $P_{PD(max)} \rightarrow Maximum$ average available power at the PD PI

47

Extended SPE power classes for 10BASE-T1L (802.3cg)

Also refer to the APL lecture

Class	10	11	12	13	14	15
V _{PSE(max)} (V)	30	30	30	58	58	58
$V_{PSE_OC(min)}(V)$	20	20	20	50	50	50
V _{PSE(min)} (V)	20	20	20	50	50	50
I _{PI(max)} (mA)	92	240	632	231	600	1579
P _{Class(min)} (W)	1.85	4.8	12.63	11.54	30	79
V _{PD(min)} (V)	14	14	14	35	35	35
P _{PD(max)} (W)	1.23	3.2	8.4	7.7	20	52

 $V_{\text{PSE}(\text{max})} \rightarrow \text{Maximum}$ allowed voltage at the PSE PI over the full range of operating conditions

 $V_{PSE_OC(min)} \rightarrow Minimum$ allowed open circuit voltage measured at the PSE PI

 $I_{PI(max)} \rightarrow M$ aximum current flowing at the PSE and PD PIs except during inrush or an overload condition

P_{Class(min)} → Minimum average available output power at the PSE PI

 $P_{PD(max)} \rightarrow Maximum$ average available power at the PD PI

* Single-pair Power over Ethernet (SPoE) use these classes. Refer to Ethernet Alliance.

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

49

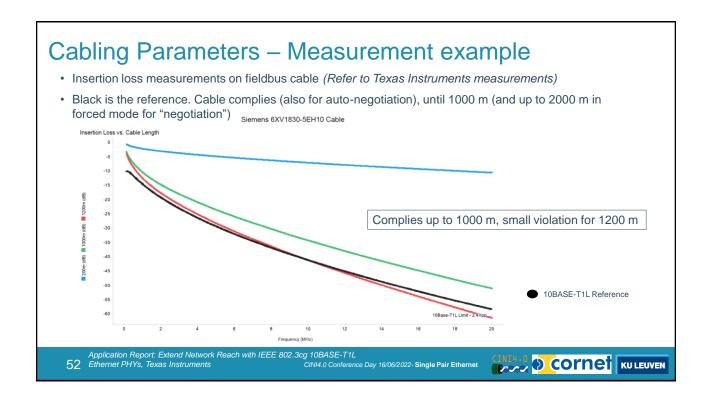
(Industrial) Cabling for Single Pair Ethernet

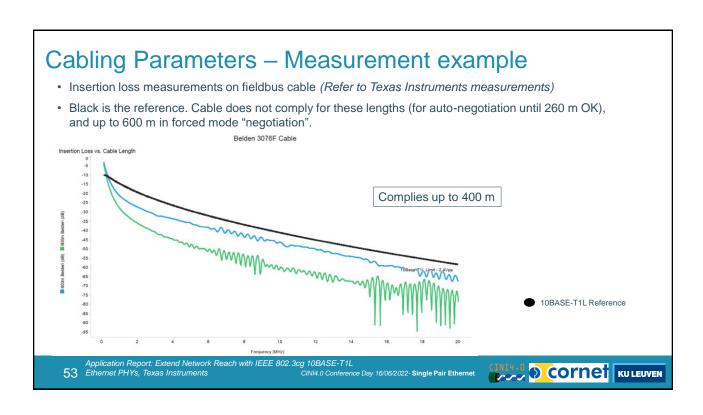
"The standard makes the impossible possible in terms of utilizing Ethernet for two-wire long-distance communications" (TI (1))

• 100BASE-T1, 1000BASE-T1

- 40 m
- Shielded
- Defined in IEC 61156-11 (fixed installation) and IEC 61156-12 (flexible installation)
- · 600 MHz bandwidth required
- 100 Ω characteristic impedance

10BASE-T1L


- (Minimum) 200 m (1 V_{ptp}), 1000 m (2.4 V_{ptp}) (*TI: 1000 m (1 V_{ptp}), up to 2000 m (2.4 V_{ptp})*)
- Shielded
- · 20 MHz bandwidth required
- Cabling requirements fit Fieldbus type A cable (e.g. PROFIBUS PA, Foundation Fieldbus)
- 100 Ω characteristic impedance


(1) Application Report: Extend Network Reach with IEEE 802.3cg 10BASE-T1L
50 Ethernet PHYs, Texas Instruments CINI4.0 Conference Day 16/06/2022-Single Pair Ethernet

Refer to lecture "Assuring Cabling Infrastructure Readiness -Advanced cable testing for standard and Single Pair Ethernet"

Negotiation phase has different requirements! 10BASE-T1L negotiation Lowest frequency 8 MHz • (Long) Brownfield cables with high insertion losses around 500 kHz may limit the T1L length **Total Value Order National Tip Order National National

Industrial connectors for SPE

- Defined in IEC 63171
- IP20-IP67
- M8, M12, Plugin connectors
- · 4-wire connectors with 2 data and 2 power pins exist

54

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

Industrial connectors for SPE ISO/IEC 63171 CONNECTORS FOR ELECTRICAL AND ELECTRONIC EQUIPMENT IEC 63171-1 IEC 63171-2 IEC 63171-3 IEC 63171-5 IEC 63171-6 PxC, WM, RdM Company Commscope PxC, WM, RdM SIEMON BKS Harting Picture Rectangle / M8 / Push LC-Style TERA IP M8/M12 Type Rectangle Square-shaped #Pairs 1/4 1/4 Degree of protection IP20 IP20 IP20 IP20 IP20 / IP67 CORNET KULEUVEN 55 CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

56

Refer to lecture "APL - Advanced

Physical Layer: SPE for the

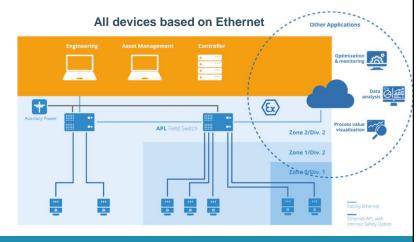
process industry"

Ethernet – APL (Advanced Physical Layer)

- Ethernet-APL is more than just Single Pair Ethernet.
- · Ethernet-APL is made up of
 - Single Pair Ethernet (IEEE 802.3cg-2019, 10BASE-T1L)
 - 2-WISE: 2-Wire Intrinsically Safe Ethernet (IEC 60079) (compare to FISCO)
 - Type A fieldbus cable (IEC 61158-2, for intrinsic safety).
- The Ethernet-APL cable specification is important because end users can potentially re-use existing installed Type A fieldbus cable.
 - Characteristic impedance 100 Ω.
 - Type A two-wire cable with shielding is polarity independent to reduce installation errors.
 - Up to 10 connections:

- Few tools (screwdriver, wire preparation tools to physical connect) needed.
- Analog Devices showed on the HM 2022 combined TSN and T1L in one device, including cable "ageing and wear" detection. Also refer to Lapp (and Helmholz), Igus, Indu-Sol for "ageing and wear" detection.

57



The Goal of Ethernet-APL

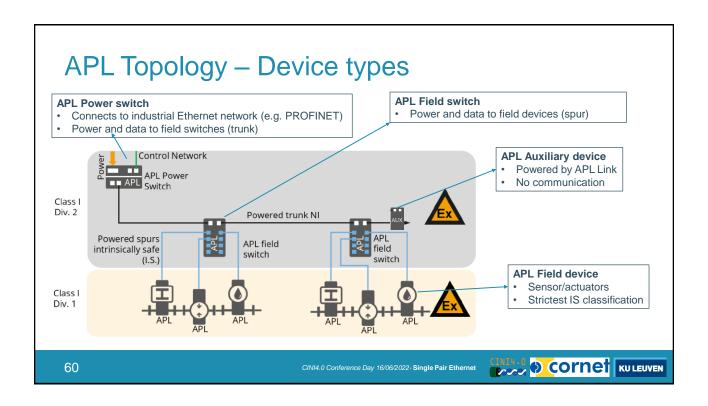
"Bring Ethernet to the field"

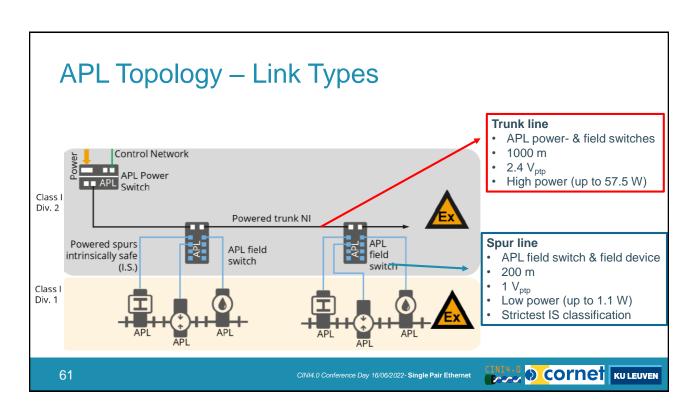
- ➤ 1 Ethernet network for Field and Control level
- ➤ Facilitate IIoT and Industry 4.0
- ➤ Allow easy migration from existing brownfield

58

What is Ethernet-APL

"Extension to 10BASE-T1L for use in the process industry"


- ➤ 10 Mbit Ethernet (10BASE-T1L)
- ➤ 2-Wire cabling, optional re-use of existing Fieldbus infrastructure
 - > Reference cable is fieldbus type A cable, IEC 61158-2 (e.g. PROFIBUS PA, Foundation Fieldbus)
- ➤ Long distances up to 1000 m
- ➤ Up to 10 inline connectors
- ➤ Power + data over a single wire pair
- ➤ Optional intrinsic safety with 2-Wire Intrinsically Safe Ethernet (2-WISE, IEC TS 60079-47)


59

APL Topology – Power

Source power class 4 is still in progress

	Maximum voltage, minimum output power	Permitted segment class	Permitted load power classes
Α	15 V DC / 0.54 W	S	A
С	15 V DC / 1.1 W	S	A, B, C
3	50 V DC / 57.5 W	Т	3
46	50 V DC / 92 W ⁶	Т	3, 4

62

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

63

Single Pair Ethernet

- SPE provides another physical layer that can be used by network design engineers
- · ... But with some distinct advantages!
 - · Smaller, lighter, simpler cabling and connectors, simpler field assembly
 - Nothing changes in the OSI Layer 2-7
- · Different SPE standards allow for flexible network design
 - High bandwidth
 - · Long distance
 - · Power over Data Line
 - Ethernet-APL
 - ...

64

Questions?

65

