

Single Pair Ethernet

CINI4.0 Conference Day – 16/06/2022 - Gent

Arne Verhoeven Dimitri De Schuyter Mathieu Troch Philippe Saey (lecturer)

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

From 2 pair 100 Mbps (e.g. PROFINET)

To 4 pair 1000 Mbps (1 Gbps, difficult confection)

To 1 pair 10 – 100 - 1000 Mbps

Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair

- SPE affects only the physical layer
 - Just like optical fiber, WiFi...
- Layers 2-7 remain unchanged

802.3 Standard Ethernet

Application	 End User layer HTTP, FTP, IRC, SSH, DNS
Presentation	 Syntax layer SSL, SSH, IMAP, FTP, MPEG, JPEG
Session	 Synch & send to port API's, Sockets, WinSock
Transport	End-to-end connectionsTCP, UDP
Network	PacketsIP, ICMP, IPSec, IGMP
Data Link	FramesEthernet, PPP, Switch, Bridge
Physical	 Physical structure Coax, Fiber, Wireless, Hubs, Repeaters

SPE Specific

Advantages of Single Pair Ethernet

- Smaller connector + reduced footprint
- Lighter, more compact, cheaper and simpler cabling
- Simpler field assembly of connectors
- Power + data over 1 wire pair
- High bandwidth up to 1000 Mbps
- Low bandwidth (10 Mbps) over 1000 m
 - With optional intrinsic safety
 - With optional re-use of existing fieldbus cabling

Implemented in different standards!

SPE (10BASE-T1L) PCB

RJ45 PCB

ornet

Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- Balanced/differential: e.g. RS485, Ethernet
- Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use cases"

Twisted:

 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)

cornet

KU LEUVEN

le Pair Ethernet

What is Single Pair Ethernet? Reduction of inductive coupling

Without twisted pair: Magnetic field induces a current → The two currents strengthen each other

Twisted pair cable

Magnetic field
Induced noise current

Twisted pair: Magnetic field induces a current → Currents from 2 loops neutralise each other Balanced (or differential) signals:

- Unbalanced = referred to the same common ground
- Balanced/differential: e.g. RS485, Ethernet
- Refer to "The Ethernet physical layer revisited" and "Assuring Cabling Infrastructure Readiness - Advanced cable testing for standard and Single Pair Ethernet" and "EMC - Introduction and industrial use cases"

Twisted:

 <> EMI (reduces radiation from the pair, improves rejection of external EMI, reduces crosstalk between neighboring pairs)

ornet

Full duplex:

09:50:15

- TX/RX possible at the same time
- Your PROFINET cable has 4 wires, 2 wire pairs: TX and RX are nicely separated!
- Measurement on 65 m PN cable, voltage signals on TX and RX at switch and IO-Device sides:
 - Always signals on both wire pairs! (Unlike e.g. RS232c or RS485)
 - Attenuation of the voltage levels: at one end, and only 65 m
- Refer to "The Ethernet physical layer revisited"

Full duplex:

- TX/RX possible at the same time
- Your PROFINET cable has 4 wires, 2 wire pairs: TX and RX are nicely separated!
- Measurement on 65 m PN cable, voltage signals at switch and IO-Device sides:
 - Always signals on both wire pairs! (Unlike e.g. RS232c or RS485)
 - Attenuation of the voltage
 levels: at one end, and only 65 m
- Refer to "The Ethernet physical layer revisited"

- Single Pair Ethernet (SPE) provides full duplex transmission (and power delivery) over a single balanced twisted wire pair
- Interpretation Challenges:
 - Balanced
 - Twisted
 - Full duplex
 - Over one wire pair?
 - Signals
 - Power

Over one wire pair ???

- Superposition of signals as these are always present
- Large one from the "near end" superimposes on the small one coming from the "far end"
- Some types of SPE cable are a 1000 m long ... up to 60 dB less signal (depending on the frequency)
- We see on both sides reflections ("echo") because of small changes in characteristic impedance along the way (passive connections, different cable types, ageing and wear, ...)
- We pick up disturbances along the way
- And ... PoE requires 4 wires ...

Background: reflection – RS485 example

Open line $(R_t > Z_o)$

Reflection coefficient

• The way how a signal will be reflected can be calculated by the reflection coefficient:

$$\Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$

• For short circuited lines:

A reflection coefficient of -1 = total and negative reflection

• For open lines:

A reflection coefficient of +1 = total and positive reflection

$$\Gamma = \frac{\infty \Omega - 150 \Omega}{\infty \Omega + 150 \Omega} = 1$$

 $\frac{0 \ \Omega - 150 \ \Omega}{2} = -1$

SPE Standards in short

SPE Standards - Properties

	10BASE-T1S	10BASE-T1L	100BASE-T1	1000BASE-T1
Standard	802.3cg-2019	802.3cg-2019	ISO/IEC/IEEE 8802- 3:2017/Amd 1-2017	ISO/IEC/IEEE 8802- 3:2017/Amd 4-2017
Duplex type	Half duplex	Full duplex	Full duplex	Full duplex
Max. unshielded cable length (m)	15 (point-to-point) 25 (multidrop)	/	15	15
Max. shielded cable length (m)	15 (point-to-point) 25 (multidrop)	1000	40	40
Max peak-to-peak voltage level of transceiver (V)	1	1, 2.4	2.2	1.3
PoDL	Point-to-point: Yes Multidrop: in progress	Yes	Yes	Yes
Extra features	Multidrop	Ethernet-APL with intrinsic safety for process industry		

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

- SPE affects only the physical layer
 - Just like optical fiber, WiFi...
- Layers 2-7 remain unchanged
- PHY interfaces with data link "MAC" layer using the standardized Media Independent Interface (MII) => also here reuse of (part of) the existing electronic design

cornet

SPE: full duplex over one single twisted wire pair Interfacing SPE PHY with standard 802.3 MAC

cornet

- Both transmitters send simultaneously → signals are superimposed on cable
- PHY must separate transmitted and received signal → hybrid circuit

- But... impedance mismatches exist → part of transmitted signal reflected: "echo"
- Echo can not be interpreted as a received signal from partner PHY → **Removed by Echo Canceller** (signals drawn only on Master side)

cornet

• How do 100BASE-T1 signals look like?

- Surprise: it's nothing new ...
- Your 1 Gbps Ethernet uses ... SPE signaling
- Use all four pairs with full-duplex transmission on each pair. (Requires hybrid.)

1000BASE-T uses DSP-based adaptive filtering to cancel the effects of echo, crosstalk and noise

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

The Ethernet Frame

- Ethernet frame remains the same, except preamble and Inter Frame Gap (IFG)
 - Start- and end-of-stream delimiter added (SSD and ESD)

Also in e.g. PRP redundancy and "in the wireless phase" in WiFi you get a header/trailer: invisible for end user

Start-of-Stream Delimiter (SSD)

- Replaces first x bits of preamble
 - 10BASE-T1L: 16 bits
 - 100BASE-T1: 9 bits
 - 1000BASE-T1: 9 bits

End-of-Stream Delimiter (ESD)

- Replaces first y bits of IFG
 - 10BASE-T1L: 16 bits
 - 100BASE-T1: 9 bits
 - 1000BASE-T1: 9 bits

orne

100BASE-T1 Signal Encoding

- Different standards = different physical signals
- But... they share common encoding principles (except 10BASE-T1S)

100BASE-T1 and 1000BASE-T1

750 MBd = 1.125 GBd raw before FEC, encoding and OAM

100BASE-T1 PCS

Figure 4.29 Example for elements of a 100BASE-T1/OABR PCS receiver.

100BASE-T1 – 4bit/3bit Encoding

- Data stream from MAC layer \rightarrow 4-bit nibbles at 25 MHz
- Convert to 3-bit blocks at 33,3 MHz

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

100BASE-T1 Scrambling

- Data stream scrambled using a pseudo-random code
- Prevent loss of synchronization between PHYs
- Spread transmit power over frequency band
- Reduces DC portion of signal
- Reduces electromagnetic interference
- Reduces radiated emissions

Scrambler function

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

100BASE-T1 - 3bit/2ternary encoding

- Ternary = 3-level value (-1, 0, 1)
- 3-bit blocks coded into 2 ternaries 9 possibilities
- Coding table dependent on PHY status

Table 96-2-Data symbols when tx_mode=SEND_N

Sd _n [2:0]	TA _n	TB _n
000	-1	-1
001	-1	0
010	-1	1
011	0	-1
Used for SSD/ESD	0	0
100	0	1
101	1	-1
110	1	0
111	1	1

Encoding example

3B	001	100	111
2T	-1, 0	0, 1	1, 1

TI: 100BASE-T1 Ethernet: the evolution of automotive networking

PAM3-Modulation

- 3-level Pulse Amplitude Modulation (PAM3)
 - 3 amplitude levels (Ternary) \rightarrow -1, 0, 1
- Transmitted at 66,6 MHz, 1 ternary every 15 ns
- Full duplex transmission \rightarrow 2 PAM3 signals superimposed on cable

KU LEUVEN

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

PAM3-Modulation

PAM3-Modulation

• 100BASE-T1 has a reduced frequency content compared to 100BASE-TX

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

10BASE-T1L Encoding

- 2 Amplitude options: 1 V_{ptp} and 2.4 V_{ptp}
- Max cable length: 1000 m
- Encoding systems
 - Scrambling, Disparity handling, 4B3T, PAM3

ornei

KU LEUVEN

10BASE-T1L Physical signal

- Disparity = difference between transmitted "+1" and "-1" symbols
- Disparity handling

34

- Goal \rightarrow Achieve DC-free PAM3 transmission = DC-free 4B3T coding
- How \rightarrow Change 4B3T coding table based on disparity

10BASE-T1L Disparity handling

• Default disparity = 2

- 4B3T Coding 00+ +-+ -+-
 - Resulting disparity = 3

	*								
	Sd _n [3:0]	Disparity	y = 1	Disparity =	= 2 /	Disparity = 3		Disparity =	- 4
		Ternary	Disparity	Ternary	Disparity	Ternary	Disparity	Ternary	Disparity
		Triplet	Change	Triplet	Change	Triplet	Change	Triplet	Change
	0000	+0+	2	0-0	-1	0-0	-1	0-0	-1
ſ	0001	0-+	0	0-+	0	0-+	0	0-+	0
	0010	+-0	0	+-0	0	+-0	0	+-0	0
→	0011	00+	1	00+	1	00+	1	0	-2
	0100	-+0	0	-+0	0	-+0	0	-+0	0
	0101	0++	2	-00	-1	-00	-1	-00	-1
ſ	0110	-++	1	-++	1	+	-1	+	-1
	0111	-0+	0	-0+	0	-0+	0	-0+	0
Γ	1000	+00	1	+00	1	+00	1	0	-2
→	1001	+-+	1	+-+	1	+-+	1		-3
	1010	++-	1	++-	1	+	-1	+	-1
Γ	1011	+0-	0	+0-	0	+0-	0	+0-	0
→	1100	+++	3	-+-	-1	-+-	-1	-+-	-1
Ī	1101	0+0	1	0+0	1	0+0	1	-0-	-2
	1110	0+-	0	0+-	0	0+-	0	0+-	0
ſ	1111	++0	2	00-	-1	00-	-1	00-	-1

Default

4B3T Coding based on disparity

cornet

10BASE-T1L Scrambler

$$g_M(x) = 1 + x^{13} + x^{33}$$
$$g_S(x) = 1 + x^{20} + x^{33}$$

Side-stream scrambler employed by the MASTER PHY

Side-stream scrambler employed by the SLAVE PHY

10BASE-T1L Transmit Symbol Generation Block Diagram

37 https://www.ieee802.org/3/cg/public/Sept2017/Graber_3cg//1/a@_09/far@ndfe Day 16/06/2022- Single Pair Ethernet

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

PoE and PoDL Principles

2 Types of devices

- Load: Powered Device PD
- Source: Power Sourcing Equipment PSE
- Power over Ethernet (PoE)
 - PSE and PD connected through transformer center taps
 - 44-57 V
 - Max. 25,5 W* (802.3at, 4-wire cabling)

• SPE – Power over Data Line (PoDL)

- PSE and PD Connected through highpass/lowpass band splitting network
- 12, 24, 48 V
- Max. 50 W (802.3bu)

"A Quick Walk Around the Block with PoDL", D. Dwelly. IEEE P802.3bu Power over Data Lines Tutorial

- November 2015 IEEE 802.3 Plenary

PoDL power classes (802.3bu)

	12 Unreg PS	V ulated SE	12 Regu PS	V lated SE	24 Unreg PS	V ulated SE	24 Regu PS	V lated SE	48 Regu PS	V lated SE
Class	0	1	2	3	4	5	6	7	8	9
$V_{PSE(max)}(V)$	18	18	18	18	36	36	36	36	60	60
$V_{PSE_{OC(min)}}(V)$	6	6	14.4	14.4	12	12	26	26	48	48
$V_{PSE(min)}(V)$	5.6	5.77	14.4	14.4	11.7	11.7	26	26	48	48
I _{PI(max)} (mA)	101	227	249	417	97	339	215	461	735	1360
P _{Class(min)} (W)	0.566	1.31	3.59	6.79	1.14	3.97	5.59	12	35.3	65.3
$V_{PD(min)}(V)$	4.94	4.41	12	10.6	10.3	8.86	23.3	21.7	40.8	36.7
P _{PD(max)} (W)	0.5	1	3	5	1	3	5	10	30	50

 $V_{PSE(max)} \rightarrow Maximum$ allowed voltage at the PSE PI over the full range of operating conditions

 $V_{PSE_OC(min)} \rightarrow Minimum allowed open circuit voltage measured at the PSE PI$

 $I_{Pl(max)} \rightarrow Maximum$ current flowing at the PSE and PD PIs except during inrush or an overload condition

 $P_{Class(min)} \rightarrow Minimum$ average available output power at the PSE PI

 $P_{PD(max)} \rightarrow Maximum$ average available power at the PD PI

Extended SPE power classes for 10BASE-T1L (802.3cg) Also refer to the APL lecture

Class	10	11	12	13	14	15
V _{PSE(max)} (V)	30	30	30	58	58	58
$V_{PSE_OC(min)}(V)$	20	20	20	50	50	50
V _{PSE(min)} (V)	20	20	20	50	50	50
I _{PI(max)} (mA)	92	240	632	231	600	1579
P _{Class(min)} (W)	1.85	4.8	12.63	11.54	30	79
V _{PD(min)} (V)	14	14	14	35	35	35
P _{PD(max)} (W)	1.23	3.2	8.4	7.7	20	52

 $V_{PSE(max)} \rightarrow Maximum$ allowed voltage at the PSE PI over the full range of operating conditions

 $V_{PSE OC(min)} \rightarrow Minimum$ allowed open circuit voltage measured at the PSE PI

 $I_{PI(max)} \rightarrow Maximum current flowing at the PSE and PD PIs except during inrush or an overload condition$

 $P_{Class(min)} \rightarrow$ Minimum average available output power at the PSE PI

 $P_{PD(max)} \rightarrow$ Maximum average available power at the PD PI

* Single-pair Power over Ethernet (SPoE) use these classes. Refer to Ethernet Alliance.

IEEE802.3cg

41

CORNET KU LEUVEN

https://ethernetalliance.org/wp-content/uploads/2021/07/EA_TechBrief-SPE-SPoE_FINAL.pdf

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

(Industrial) Cabling for Single Pair Ethernet

"The standard makes the impossible possible in terms of utilizing Ethernet for two-wire long-distance communications" (TI ⁽¹⁾)

• 100BASE-T1, 1000BASE-T1

• 40 m

Refer to lecture "Assuring Cabling Infrastructure Readiness -Advanced cable testing for standard and Single Pair Ethernet"

cornet

KU LEUVEN

- Shielded
- Defined in IEC 61156-11 (fixed installation) and IEC 61156-12 (flexible installation)
- 600 MHz bandwidth required
- 100 Ω characteristic impedance

• 10BASE-T1L

- (Minimum) 200 m (1 V_{ptp}), 1000 m (2.4 V_{ptp}) (*TI: 1000 m (1 V_{ptp}), up to 2000 m (2.4 V_{ptp})*)
- Shielded
- 20 MHz bandwidth required
- Cabling requirements fit Fieldbus type A cable (e.g. PROFIBUS PA, Foundation Fieldbus)
- 100 Ω characteristic impedance

Negotiation phase has different requirements ! 100BASE-T1 negotiation Lowest frequency 8 MHz

• (Long) Brownfield cables with high insertion losses around 500 kHz may limit the T1L length

File Edit Vertical Digital Horiz/Acq Trig Disp	ay Cursors Measure Mask Math MyScope Analyze Utilities Help 🔽	Tek _ XeT	File Edit Vertical Digital Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities Help 🔽	Tek _ XeT
		Curs1 X Pos (a)		-3.45ms
		-413.52µs		Curs2 X Pos (b)
	<u> </u>	-413.39µs		-3.45ms
		이 만 이 만 이 약 다.		4
	T A A A A A			
			╶╴╏┋╎┕┯┯╡┊┊╘┯┥╎┕┥╎╘┥╎╘┥╶┊┝┯┯┥╶╷┝╤┯╡╶╷┕┯┯╡╶╷╘┯┯┥╶┊╘┥╷┕┯┯┥┊╷┕┯┯	
y ka ka ka ka ya ka ya	은 승규는 승규는 승규는 승규는 승규는 승규는 승규는 것을 들었다.	en Viennie in nas		
	을 넣다는 것 같은 것을 눈가 올랐다.	~ 안~ 말~ 말~ ~ 물	- 물건 영상 문건 영상 입장 영법가 물건 영법가 물건 영법가 물건 영법가	
	을 다니는 아이들은 아이들이 같이 같이 같이 하는 것이 같이 하는 것이 같이 하는 것이 않아. 않아 아니 아니 않아? 않아. 않아 아니 않아? 않아? 않아? 않아? 않아? 않아? 않아? 이 않아?	이 한 아이들에 아름.	- [289] [29] 2013] 2014 [289] [29] 2013] 2014 [289]	
		<u></u>	<u>For a formation and the second s</u>	
C1 500.0mV/div 50Ω B _W :500M ZIC1 500.0mV -413.7µs-412.7µs	VI 568mV II 413.518µs V2 525.9mV I2 -413.393µs ∆V 42.1mV Δt 125ns ∆V∆I -336.8kV/s 1∆1 8.0MHz	20.0ms/div 500MS/s 2.0ns/pt Stopped Single Seq 1 acqs RL:100.0M Man December 10, 2021 15:16:58	C1 600.0mV/div 500 B BW:500M T1 -3.45ms After C1 f 804.0mV 20.0ms/div 500M Stopped Stopped	AS/s 2.0ns/pt Single Seq A RL:100.0M er 10, 2021 10:55:33

https://www.ieee802.org/3/cg/public/Sept2017/Graber_3cg_15a_0917.pdf

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

Cabling Parameters – Measurement example

- Insertion loss measurements on fieldbus cable (Texas Instruments)
- Black is the reference. Cable complies (also for auto-negotiation), until 1000 m (and up to 2000 m in forced mode for "negotiation")
 Siemens 6XV1830-5EH10 Cable

Application Report: Extend Network Reach with IEEE 802.3cg 10BASE-T1L

45 Ethernet PHYs, Texas Instruments

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

cornet

Cabling Parameters – Measurement example

• Insertion loss measurements on fieldbus cable (Texas Instruments)

Belden 3076F Cable

• Black is the reference. Cable does not comply for these lengths (for auto-negotiation until 260 m OK), and up to 600 m in forced mode "negotiation".

Application Report: Extend Network Reach with IEEE 802.3cg 10BASE-T1L

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

Industrial connectors for SPE

- Defined in IEC 63171
- IP20-IP67
- M8, M12, Plugin connectors
- 4-wire connectors with 2 data and 2 power pins exist

Industrial connectors for SPE

	ISO/IEC 63171	CONNECTORS FOR ELECTRICAL AND ELECTRONIC EQUIPMENT					
	IEC 63171-1	IEC 63171-2	IEC 63171-3	IEC 63171-4	IEC 63171-5	IEC 63171-6	
Company	Commscope	PxC, WM, RdM	SIEMON	BKS	PxC, WM, RdM	Harting	
Picture		lucius (B				07 Ø	
Туре	LC-Style	Rectangle	TERA IP	Square-shaped	M8/M12	Rectangle / M8 / Push Pull	
#Pairs	I	1	1/4	1	1/4	Т	
Degree of protection	IP20	IP20	IP20	IP20	IP67	IP20 / IP67	

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

Ethernet – APL (Advanced Physical Layer) > ethernet-apl

- Ethernet-APL is more than just Single Pair Ethernet.
- Ethernet-APL is made up of
 - Single Pair Ethernet (IEEE 802.3cg-2019, 10BASE-T1L)
 - 2-WISE: 2-Wire Intrinsically Safe Ethernet (IEC 60079) (compare to FISCO)
 - Type A fieldbus cable (IEC 61158-2, for intrinsic safety).
- The Ethernet-APL cable specification is important because end users can potentially re-use existing installed Type A fieldbus cable.
 - Characteristic impedance 100 Ω .
 - Type A two-wire cable with shielding is polarity independent to reduce installation errors.
 - Up to 10 connections:

- Few tools (screwdriver, wire preparation tools to physical connect) needed.
- Analog Devices showed on the HM 2022 combined TSN and T1L in one device, including cable "ageing and wear" detection.
 Also refer to Lapp (and Helmholz), Igus, Indu-Sol for "ageing and wear" detection.

Refer to lecture "APL - Advanced Physical Layer: SPE for the process industry"

The Goal of Ethernet-APL

"Bring Ethernet to the field"

- 1 Ethernet network for Field and Control level
- ≻ Facilitate IIoT and Industry 4.0
- Allow easy migration from existing brownfield

cornet

What is Ethernet-APL

"Extension to 10BASE-T1L for use in the process industry"

- ➤ 10 Mbit Ethernet (10BASE-T1L)
- >2-Wire cabling, optional re-use of existing Fieldbus infrastructure
 - Reference cable is fieldbus type A cable, IEC 61158-2 (e.g. PROFIBUS PA, Foundation Fieldbus)
- Long distances up to 1000 m
- ≻ Up to 10 inline connectors
- Power + data over a single wire pair
- > Optional intrinsic safety with 2-Wire Intrinsically Safe Ethernet (2-WISE, IEC TS 60079-47)

APL Topology – Device types

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

cornet

APL Topology – Link Types

CINI4.0 Conference Day 16/06/2022- Single Pair Ethernet

cornet

• Source power class 4 is still in progress

Source power class	Maximum voltage, minimum output power	Permitted segment class	Permitted load power classes
А	15 V DC / 0.54 W	S	A
С	15 V DC / 1.1 W	S	А, В, С
3	50 V DC / 57.5 W	Т	3
4 ⁶	50 V DC / 92 W ⁶	Т	3, 4

Outline

- Introduction
 - What is Single Pair Ethernet?
 - Advantages of Single Pair Ethernet
 - Single Pair Ethernet Standards
- SPE: full duplex over one single twisted wire pair How?
- Ethernet frame Signal encoding
- Power over Data Line (PoDL)
- Cabling and Connectors
- Ethernet Advanced Physical Layer (APL)
- Conclusion

Single Pair Ethernet

- SPE provides another physical layer that can be used by network design engineer
- ... But with some distinct advantages!
 - Smaller, lighter, simpler cabling and connectors, simpler field assembly
 - Nothing changes in the OSI Layer 2-7
- Different SPE standards allow for flexible network design
 - High bandwidth
 - Long distance
 - Power over Data Line
 - Ethernet-APL
 - •

Questions?

100BASE-T1 – 3bit/2ternary encoding

Table 96–1—Idle symbol mapping in training

Sd _n [2:0]	TA _n	TB _n
000	-1	0
001	0	1
010	-1	1
011	0	1
100	1	0
101	0	-1
110	1	-1
111	0	-1

Table 96-2-Data symbols when tx mode=SEND N

Sd _n [2:0]	TA _n	TB _n
000	-1	-1
001	-1	0
010	-1	1
011	0	-1
Used for SSD/ESD	0	0
100	0	1
101	1	-1
110	1	0
111	1	1

Table 96-3—Idle symbols when tx_mode=SEND_N

	tx_mode = SEND_N			
	$Sx_n = 0$		$Sx_n = 1$	
Sd _n [2:0]	TA _n	TB _n	TA _n	TB _n
000	-1	0	-1	0
001	0	1	1	1
010	-1	1	-1	1
011	0	1	1	1
100	1	0	1	0
101	0	-1	-1	-1
110	1	-1	1	-1
111	0	-1	-1	-1

Link start-up

- 3 PHY Modes
 - SEND_Z \rightarrow Zeros
 - SEND_I \rightarrow PAM3 Idle signals
 - * SEND_N \rightarrow PAM3 data or idle signals
- Training echo canceler
- Scrambler synchronization

CORNET KU LEUVEN

PoDL Link Establishment

- 1. PSE Detects link
 - Checks for 4 V Zener with 10 mA test current
- 2. PSE asks PD how much power it needs using Serial Communication Classification Protocol (SCCP)
 - SCCP Operates in lowpass band
 - Can be skipped if PSE has prior knowledge of PD (Fast Startup Mode)
- 3. All in order \rightarrow PSE turns on power
- 4. Sleep mode 3.3V with < 1 mA

- SPE affects only the physical layer
 - Just like optical fiber, WiFi...
- Layers 2-7 remain unchanged
- PHY interfaces with data link "MAC" layer using the standardized Media Independent Interface (MII) => also here reuse of (part of) the electronic design capacitief gekoppeld

• https://standards.ieee.org/standard/802_3bt-2018.html

cornet

Working principle

- Power over Ethernet (PoE) \rightarrow Power over 2 wire pairs (802.3af, 802.3at)
- Power over Data Line (PoDL) \rightarrow Power over a single wire pair (802.3bu)
- 2 Types of devices
 - Load: Powered Device PD
 - Source: Power Sourcing Equipment PSE

"A Quick Walk Around the Block with PoDL", D. Dwelly. IEEE P802.3bu Power over Data Lines Tutorial

- November 2015 IEEE 802.3 Plenary

